
Biosignals	from	the	point	of	view	of	biophysics	-
frequency	spectrum	of	the	signal
Frequency	spectrum	of	the	signal
In	addition	to	the	time	course	of	the	signal,	a	highly	important	characteristic	is	its	frequency	spectrum,	i.e.	the
content	of	frequencies	contained	in	it.	For	that	reason,	we	have	to	clarify	the	basic	principle	of	the	conversion
between	the	time	and	frequency	domains	,	i.e.	the	Fourier	transform	,	at	the	very	beginning	.

We	see	that	the	waveforms	of	the	signal	(18)	or	(19)	contain	a	single	frequency

f	[Hz]	=	ω	[rad/s]	/	2	π	[rad](20)

which	follows	directly	from	(13).

Stacking	(superposition)	of	harmonic	signals

Let's	try	what	signal	is	created,	for	example,	by	combining	two	harmonic	signals:

x(t)	=	u(t)	+	v(t)(21a)

where

u(t)	=	a.	cos(α)	=	a.	cos	(ω.	t)(21b)

v(t)	=	b.	sin(α)	=	b.	sin	(ω.	t)(22c)

We	can	imagine	the	signals	u(t)	and	v(t)	as	the	projections	of	two	mutually	perpendicular	vectors	of	length	a	and	b
,	rotating	at	a	common	angular	velocity	ω.	Their	vector	sum	will	have	a	length	given	by	the	Pythagorean	theorem

√(a2	+	b2)(22a)

and	phase	φ,	given	by	the	ratio

tg	(φ)	=	a	/	b(22b)

and	will	rotate	with	the	same	angular	velocity	.	An	important	result	that	we	would	reach	by	generalizing	this
example	is	that	the	sum	of	an	arbitrary	number	of	harmonic	signals	with	arbitrary	amplitudes	and	phases,
but	with	the	same	frequencies	,	is	again	a	harmonic	signal	of	the	same	frequency	,	whose	amplitude	and
phase	are	given	by	the	vector	sum	of	the	rotating	vectors	of	the	individual	harmonic	signals	.

Another	interesting	experiment	is	the	composition	of	two	harmonic	signals	of	different	frequencies	,	of	which	the
second	frequency	is	an	integral	multiple	of	the	first,	fundamental	frequency	.	The	amplitudes	and	phases	of
both	signals	are	again	arbitrary.	Let's	choose	as	an	example:

x(t)	=	x1(t)	+	x2(t)(23a)

kde	x1(t)	=	a1.	sin(α	+	φ1)	=	a1.	sin(ω.	t	+	φ1)(23b)

x2(t)	=	a2.	sin(2α	+	φ2)	=	a2.	sin(2ω.	t	+	φ2)(23c)

The	result	will	be	a	signal	again	with	a	period	according	to	(17),	but	its	course	will	differ	from	a	sinusoidal,
harmonic	one	.	By	experimenting	with	different	amplitudes	and	phases,	we	can	achieve	different	signal
waveforms.

By	using	a	larger	number	of	harmonic	signals	with	frequencies	of	one-,	two-,	three-,	four-,	etc.	up	to	n-times	of	the
fundamental	frequency	and	their	appropriate	composition,	we	can	very	accurately	approach	a	virtually	arbitrarily
chosen	periodic	signal	course,	and	it	is	this	procedure	that	is	the	basis	of	the	harmonic	or	Fourier	synthesis	or
Fourier	development.

We	call	the	sum	a	trigonometric	Fourier	series

(24)

It	can	be	proved	that	using	such	a	sum	we	can	express	practically	any	function,	e.g.	rectangular,	triangular	and	any
other.

A	completely	appropriate	question	is	how	to	find	the	relevant	weighting	coefficients	a	k	and	b	k	so	that	we	can	use
the	series	(23)	to	compose	the	necessary	function.



Fourier	(harmonic)	analysis

The	answer	to	the	posed	question	is	the	opposite	procedure	to	Fourier	synthesis,	and	that	is	Fourier	analysis,	i.e.	a
procedure	by	which,	on	the	contrary,	any	signal	course	can	be	decomposed	into	the	above-mentioned	sum	(24).
The	corresponding	coefficients	can	be	found	by	integrating	the	product	of	the	given	function	x(t)	with	the
corresponding	trigonometric	function	on	the	signal	period	interval:

			(25a)

			(25b)

Other	examples	of	elementary	waveforms:

square	wave	signal
unit	impulse	(Dirac	distribution)
unit	jump	(Heaviside	function)
triangular	signal

Power	spectrum	of	the	signal	(power	spectrum)

Another	important	characteristic	of	a	signal	is	its	power	spectrum,	which	answers	the	question	to	what	extent	the
power	of	its	individual	components	is	represented	in	the	frequency	spectrum.

Electrical	power	is	calculated	as	the	product	of	current	and	voltage	.	We	can	therefore	calculate	the
instantaneous	power	of	the	signal	at	each	instant	of	time	t	as	the	product	of	the	instantaneous	voltage
and	current	(instantaneous	values	​​of	power,	current	and	voltage	are	sometimes	denoted	by	lowercase	letters	in
contrast	to	the	average	values):

p(t)	=	u(t).	i	(t)(26)

The	given	relationship	is	true,	but	not	very	handy,	because	to	calculate	one	time-varying	quantity	we	need	to
calculate	(and	in	practice	therefore	also	measure)	the	product	of	two	signals	-	one	formed	by	current	and	the	other
by	voltage.	Usually,	however,	u(t)	and	ai(t)	are	not	mutually	independent	quantities,	but	it	is	a	signal	that	is
consumed	on	some	resistance	or	load	,	represented	by	a	real	impedance	,	which	we	consider	constant	within
the	given	limits	.	Ohm's	law	is	so	universally	valid	that	we	can	also	use	it	for	variable	quantities	:

u(t)	=	R.	i(t)(27)

i(t)	=	u(t)	/	R(28)

Applying	Ohm's	law	to	the	instantaneous	power	expression,	we	get	the	instantaneous	power	expression	:

p(t)	=	u2(t)	/	R	=	i2(t).	R(29)

We	can	use	the	mentioned	relations	for	direct	current	and	alternating	current,	here	their	special	importance	is
shown	in	the	case	of	calculating	the	instantaneous	power	of	a	signal	of	any	waveform.Assuming	a	constant	load
,	the	consumed	power	is	proportional	to	the	square	of	the	voltage	or	current	.	We	consider	this	quadratic
dependence	of	power	on	voltage	or	current	even	in	cases	where	power	consumption	on	the	load	is	not	explicitly
mentioned.

Analogous	relationships	can	also	be	derived	in	the	case	of	an	acoustic	signal	,	when	instead	of	electric	voltage
and	current	we	consider	the	instantaneous	speed	of	oscillating	particles	of	the	environment	[m/s]	and	the
instantaneous	pressure	[N/m	2	].	Their	product	represents	the	sound	intensity	[W/m	2	],	therefore	it	has	the
character	of	power	.	In	acoustics,	we	also	consider	acoustic	impedance	as	one	of	the	important	characteristics
of	the	environment,	which	–	again	within	the	given	limits	–	can	usually	be	considered	a	constant	.	Therefore,	it	is
not	surprising	that	even	in	the	case	of	an	acoustic	signal,	we	find	that	the	instantaneous	power	is	proportional
to	the	square	of	the	acoustic	pressure	oracoustic	velocities	(not	to	be	confused	with	the	speed	of	sound
propagation,	here	it	is	the	instantaneous	speed	of	oscillating	particles	of	the	environment).

We	would	reach	similar	results	when	investigating	the	course	of	other	physical	quantities	that	may	carry	some	kind
of	signal.	In	this	way,	we	arrive	at	the	knowledge	of	the	cardinal	significance,	namely	that	regardless	of	the	specific
physical	representation,	the	instantaneous	power	of	the	signal	is	proportional	to	the	square	of	its
instantaneous	deviation	.	In	the	case	of	periodic	signals	,	we	can	deduce	that	their	power	is	proportional	to
the	square	of	the	signal	amplitude	.

So	I	arrived	at	the	way	in	which	we	can	calculate	the	power	spectrum	of	any	signal:	by	harmonic	analysis,	so
that	instead	of	the	waveform	of	the	signal,	we	calculate	the	waveform	of	its	square.



The	Fourier	transform	has	the	important	mathematical	property	that	the	individual	frequency	components	are
mutually	orthogonal	or	independent.	This	has	an	enormously	important	consequence	for	practice,	because	even
the	powers	of	the	individual	components	are	independent	of	each	other,	and	the	total	power	of	the	signal	can
be	calculated	as	the	sum	of	the	powers	of	all	its	frequency	components	.	And	further:	if	we	have	already
calculated	its	frequency	spectrum	for	a	given	signal	course,	in	order	to	determine	the	power	spectrum,	it	is	not
necessary	to	carry	out	the	Fourier	transformation	once	again	on	the	square	of	its	course,	as	we	stated	above,	but	it
is	enough	to	calculate	the	square	of	the	amplitudes	of	the	individual	components	of	its	frequency	spectrum	.
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