
Biosignals	from	the	point	of	view	of	biophysics

Analog	signal	transmission
We	call	the	indicated	method	of	sensing	,	processing	(	amplification	),	transmission	and	registration	of	the	signal
analog	,	since	all	quantities	here	change	continuously	,	even	though	their	physical	nature	may	change	during	the
transmission	of	the	signal.

In	our	example	with	a	gramophone	record,	first	some	acoustic	pressure	will	cause	it	a	corresponding	mechanical
deflection	of	the	microphone	membrane.	This	mechanical	deflection	causes	a	voltage	change	on	the	microphone,
the	voltage	changes	are	amplified	by	amplifiers	whose	output	current	moves	the	spade.	When	the	record	is	played
back,	the	mechanical	movement	of	the	gramophone	needle	is	converted	into	electrical	changes,	which	are
amplified	again	and	converted	by	the	output	of	the	amplifier	into	oscillations	of	the	coil,	vibrating	the	loudspeaker
membrane,	which	causes	changes	in	air	pressure.	These	are	further	spread	through	space	as	an	acoustic	signal	to
the	eardrum	of	the	listener,	which,	like	the	membrane,	converts	them	into	the	movement	of	the	middle	ear	ossicles
.

The	essential	thing	in	this	chain	of	causes	and	effects	is	that,	although	the	physical	nature	of	the	quantities	is
different,	their	course	in	time	is	similar,	or	analogous:	the	course	of	the	mechanical	deflection	is	analogous	to	the
pressure	that	caused	it	.	Similarly,	the	course	of	the	generated	voltage	is	analogous	to	this	deviation,	the	course	of
voltage	and	current	at	the	output	of	the	amplifier	is	analogous	to	the	input	values,	etc.	The	courses	of	all	these
quantities	are	therefore	somehow	analogous	to	the	course	of	the	investigated	signal	.	According	to	this	analogy,
this	method	of	processing	is	called	analog	(not	analog!)	and	is	characterized	by	the	fact	that	all	quantities
representing	the	given	signal	change	continuously	in	the	given	chain.

Concept	of	ideal	analog	transmission	[	edit	|	edit	source	]

In	an	ideal	case,	the	course	of	the	signal	at	the	output	of	the	entire	chain	would	be	completely	analogous	to	the
course	at	its	input,	i.e.	it	could	differ	only	in	its	physical	nature,	and	its	course	at	the	output	would	be	a	faithful
representation	of	its	original	course.	For	example,	we	might	fervently	wish	that	individual	analog	quantities	were
proportional	to	each	other:	so	that	the	instantaneous	deflection	of	the	membrane	is	directly	proportional	to	the
instantaneous	acoustic	pressure	that	caused	it;	so	that	the	voltage	at	the	microphone	of	the	amplifier	is	directly
proportional	to	its	deflection;	so	that	the	output	current	of	the	amplifier	is	directly	proportional	to	the	input	voltage;
that	the	deflection	of	the	speaker	membrane	is	directly	proportional	to	this	current;	so	that	the	resulting	sound
pressure	is	directly	proportional	to	this	deflection;	that	the	deflection	of	the	ear	drum	is	directly	proportional	to	the
acoustic	pressure;	etc.	In	such	an	ideal	case,	we	could	then	express	some	output	signal	 	in	terms	of	the	input
signal	 	as

	(1)

where	 	would	be	the	constant	of	proportionality	.

Signal	Gain

In	the	event	that	 	and	 	would	have	the	same	physical	character,	i.e.	they	would	be	the	same	quantities	–
e.g.	electric	voltages,	the	constant	 	would	represent	a	physically	dimensionless	quantity:

	(2)

Both	quantities	 ,	 	can	be	compared	to	each	other.	If	we	find	that,

	(3)

Then	 	(4)

We'll	call	this	the	number	amplification.	In	our	example,	if	both	 	and	 	represented	the	waveform	of	the
input	and	output	voltages,	this	would	be	voltage	gain,	because	this	concept	of	proportionality	will	express	how
mnay	times	this	voltage	is	higher	than	the	input	voltage,	in	other	words	how	many	times	the	input	voltage	has
been	amplified.

Profit

Since	in	the	case	of	amplification	it	is	a	proportional	number,	we	preferably	use	logarithmic	units	to	express	it	,
known	as	decibel	 .	Then	we	talk	about	the	gain,	for	example	an	amplifier	amplifying	the	voltage	1000	times
will	have	a	gain	of	60	 ,	because	:



count	 	(5);

in	the	case	of	electric	current	:

count	 	(6);

and	in	case	of	performance	:

count	 	(7).

Why	do	we	multiply	by	twenty	in	the	case	of	voltage	or	current,	but	only	ten	in	the	case	of	power?	The	answer	is
simple:	because	the	power	(with	the	same	impedance	)	depends	on	the	square	of	the	voltage	or	current,	and	we
calculate	the	logarithm	of	the	square	as	twice	the	logarithm.

We	have	to	think	in	a	similar	way	in	the	case	of	non-electric	quantities	,	e.g.	when	calculating	the	sound	level
from	the	ratio	of	sound	intensities	(sound	intensity	has	the	character	of	power	-	it	is	power	related	to	a	unit	of
area	-	therefore	we	will	only	multiply	by	ten	).	These	facts	must	be	carefully	observed,	otherwise	we	will	commit
significant	order	of	magnitude	errors	-	the	amplifier	with	a	gain	of	 ,	which	we	gave	as	an	example	a	moment
ago,	will	not	amplify	the	power	a	thousand	times,	but	a	million	times!

Loss,	attenuation

If	 	(8)

which	is	the	usual	case	of	passive	line	,	in	which	there	are	losses	during	transmission	,	or	with	passive	filters	,	etc.,
of	course,	we	are	not	talking	about	signal	amplification,	but	on	the	contrary,	its	attenuation	,	which	we	also	express
in		decibels	.	The	relations	for	the	calculation	are	completely	analogous	to	those	above,	except	that	we	have	to	pay
attention	to	the	sign:	we	normally	say	that	the	signal	loss	during	transmission	was	 ,	without	mentioning	the
minus	sign.

Conversion	constant

If	the	quantities	 	and	 	have	a	different	physical	character,	we	cannot	simply	measure	them	in	this	way	-	we
cannot	say	that	the	current	 	is	twice	the	voltage	 	and	it	also	depends	on	the	chosen	units.	Therefore,	the
proportionality	constant	 	in	relations	(1)	and	(2)	has	a	definite	physical	dimension	and	it	is	not	just	a
dimensionless	number	as	in	the	case	of	amplification	or	attenuation.	The	corresponding	physical	dimension	is
obtained	by	dividing	the	physical	units	of	the	output	and	input	signal.	For	example,	if	the	input	signal	of	the	system
is	the	voltage	at	the	input	of	the	amplifier,	given	in	 ,	and	the	output	signal	is	the	deflection	of	the	stylus	in	 ,
we	give	the	conversion	constant	in	 .

It	is	not	customary	to	actually	perform	the	indicated	division,	i.e.	instead	of	the	value	 	we	usually	do	not

write	 ,	but	for	practical	reasons	we	keep	both	units	in	the	given	ratio.	One	might	think	of	shortening	the

units:	for	example,	when	registering	the	pressure,	one	could	adjust	the	conversion	constant, 	to	

	and	then	write	 ,	which	also	doesn't	make	any	sense.

As	a	last	example	of	this	kind,	let	us	consider	an	amplifier	-	current	 	voltage	converter,	which	reacts	to	a	change
in	input	current	by	 	by	changing	the	output	voltage	by	 .	In	this	case,	we	get	the	conversion	constant	

,	which	is	directly	tempting	to	perform	the	indicated	division	according	to	Ohm's	law	and	give	the	result	 .
But	yes!	After	all,	a	mere	resistance	of	size	 	can	function	as	the	converter	just	described:	when	the	current
changes	by	 	the	voltage	drop	on	it	changes	by	 .	This	reasoning	is	flawed	in	that	such	a	resistor	would
probably	not	fit	in	place	of	the	current	converter	in	most	cases,	precisely	because	of	its	too	large	input	resistance.
And	with	a	real	converter,	as	a	rule,	its	input	and	output	impedances	are	different,	so	even	in	this	last	example,	an
attempt	to	modify	the	unit	does	not	seem	meaningful.

We	will	examine	the	transmission	characteristics	in	analog	transmission	in	more	detail	in	section	2.5.

Calibration	signal



In	practically	designed	devices,	it	is	customary	to	enable	the	introduction	of	a	so-called	calibration	signal	at	the
input	of	the	entire	system.	For	example,	with	EEG	,	such	a	signal	can	be	a	rectangular	waveform	or	a	single
impulse	with	amplitude	 	and	duration	(pulse	width)	 .	By	writing	such	a	signal	on	the	output	of	the	device	-
on	moving	paper	-	we	can	characterize	the	entire	device	and	verify	the	actual	value	of	its	conversion	constant,	for
both	units	in	the	given	coordinate	system	(voltage	and	time)	at	the	same	time.

Let's	note	at	this	point	that	the	originally	rectangular	signal	will	usually	not	appear	as	a	pure	rectangle	at	the
output,	but	rather	as	some	strongly	distorted	"rectangle",	the	sides	of	which	will	be	formed	by	rounded	curves,
more	precisely	by	exponential	waveforms.	The	exact	shape	of	this	curvature	is	also	important,	as	it	informs	us
about	the	current	settings	of	the	parameters	of	the	transmission	chain,	namely	the	settings	of	the	time	constant
(affects	the	transmission	of	low	frequencies)	and	the	filter	(limits	high	frequencies).	We	say	that	the	signal	has
been	distorted	in	its	transmission	path	-	and	in	this	special	case	it	is	an	intentional	distortion	,	the	main	purpose	of
which	is	to	suppress	unwanted	artifacts.	In	addition	to	this	limiting	effect,	however,	the	set	distortion	affects	and
distorts	the	course	of	the	desired	signal	,	which	is	why	it	is	necessary	for	the	doctor	who	evaluates	and	describes
the	recording	to	take	it	into	account.

However,	the	effect	of	such	filters	on	more	complex	signal	sequences	is	not	completely	trivial	and	therefore,	to	the
displeasure	of	many,	it	is	not	possible	to	completely	omit	the	relevant	passages	from	the	theory.	Let	us	be
comforted	by	the	fact	that	we	will	eventually	find	a	much	wider	application	for	the	acquired	knowledge	than	we
initially	expected.
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